Cattle

Manually harvesting hay

Believe it or not, there are many places in the world where hay is still harvested by hand. Barring economic reasons, manual hay harvesting to provide winter fodder for animals is generally found in mountainous, rocky or uneven areas where machinery will break or simply cannot be run. As I will only be running 1-2 goats and 1-2 heads of cattle on the 10 acre pasture, there will be plenty of pasture that will grow into maturity and be wasted. Plus my hay requirements for 2-4 animals is very low. Remember from my early post on Grazing Sciences, that the most nutritious grasses are harvested before maturity and left with 3-4″ of photosynthetic material that creates the ebergy needed for grass to regenerate.

I learned the ropes from this article from a 1979 Mother Earth News article titled The Art of Cutting Hay By Hand written by a french author who at least at the time of publication, manually harvested all hay for her farm. Below is a simplified gist of the process

1. Swing the scythe that has been sharpened to a razor edge allowing the blade to do the work instead of force.

2. Re-sharpen scythe approximately every hour or every few rows of grass.

  • While my uncle is a master, I am absolutely terrible at sharpening blades with a whetstone. I found this tool very useful in the kitchen on low end knives and honestly will try it as a scythe-sharpening shortcut (Amazon kitchen knife sharpener). For my nicer kitchen knives and hunting knives, I use this kit which is fantastic, but more work (Amazon Spider Co sharpening kit).

3. The scythe naturally rakes the hay into rows so the fodder needs to be fluffed and spread to dry

4. Rake into rows

5. Once dry, bail the hay using a homemade piece of canvas (or similar material…maybe a tarp?) and tie it up. This is entirely optional! Alternatively just load the unbailed hay into its transportation method.

6. Transport hay to covered storage place

7. Unbail if bailed or spread and fluff to ensure complete drying of hay and prevent spoilage. Salt can be applied to any grass clumps that are still wet to discourage fermentation. Obviously I would use a salt meant for animal nutritional supplementation!

Thats it! The stored hay can be fed in the winter as needed.

There is an antique scythe already in my barn and I absolutely love manual labor as long as the tasks are varied. Harvesting hay manually limits the economic pit of buying single purpose equipment that dooms most failed farm operations. To put it bluntly, in the first year of starting my farm operation, I will have way more time than cashflow so the task would fit well as something productive with no extra equipment-requirements. It is also an homage to a pre-industrial way of life, provides a fun outdoor task and prevents me from buying or renting expensive equipment that would likely end up broken due to the uneven and rocky pasture. Most importantly, I will get to learn what is entailed by cutting, raking, bailing and storing hay without burning a single bit of petroleum. Assuming cattle or goat operation are expanded in the future that requires acquiring haymaking equipment, I will definitely have a deep appreciation of said equipment!

Standard
Chicks

Objectively Determining a Chicken Sale Price: Part 1

Under the banner of full transparency, here are the efforts and analysis I have done to nail down a price point for selling dressed broilers. This chart from the Organic Feed Store aligns with almost all literature I have read on raising broilers. Specifically that one bird will consume ~11 pounds of feed in an eight-week lifetime or ~15 in a 9 week lifetime. After 8 weeks, the birds start to eat more than they put on weight-wise so that is the typical culling age. Simply, they cost more to feed than the meat they put on.

Feed Consumption Chart – Meat Birds – Cornish Rock Cross

Age Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Total # of Bags
One Bird 4.2 oz. 9.2 oz. 3.7 oz. 18.8 oz. 26.1 oz. 34.5 oz. 38.5 oz. 42.6 oz. 46.5 oz. 14.63 lbs.
25 Birds 6.56 lbs. 14.38 lbs. 21.41 lbs. 29.28 lbs. 40.78 lbs. 53.91 lbs. 60.16 lbs. 66.56 lbs. 72.66 lbs. 7.32 bags
50 Birds 13.13 lbs. 28.75 lbs. 42.81 lbs. 58.75 lbs. 81.56 lbs. 107.81 lbs. 120.31 lbs. 133.13 lbs. 145.31 lbs. 14.63 bags
100 Birds 26.25 lbs. 57.5 lbs. 85.63 lbs. 117.5 lbs. 163.13 lbs. 215.63 lbs. 240.63 lbs. 266.25 lbs. 290.63 lbs. 29.26 bags

Even though I am going to cull at 8 weeks, I will use the feed requirements for a 9 week bird as it gives room for spillage, waste and just a general buffer. Now that I have the amount of feed required to raise a broiler, I contacted local feed mills.

One of the feed consultants, in his Appalachian drawl, inquired if I was going to be “One of these more natural operations.”  I responded that it will be a more natural, pasture-based approach but I personally place more emphasis on local sourcing than shipping “natural products from the Midwest” or natural kelp from Iceland. To my surprise, he about jumped out of his shoes in excitement to help me by immediately explaining their local lightly roasted soybeans, corn, alfalfa meal. He spent quite a while explaining how their mill works and the various blades for crimping, rolling or pelleting feed. He also listed the retail prices for all his ingredients as well as feed rations they have formulated for other poultry customers. They are willing to mix small amounts for me as samplers and will happily scale up production along with my operation as it expands. Needless to say, I have found my feed source!

So based on the quoted prices, I can build a model to determine all of my costs that go into each bird in its lifetime. From there it is a simple step to formulate the price per pound at which selling the birds will support my lifestyle. Stay tuned as I will publish the calculations and spreadsheets in a following post.

Standard
Cattle, Chicks, Side Projects

Experiment: Growing Bamboo for fodder

Turns out just about every livestock animal enjoys bamboo at different stages of its growth. Chickens will eat new shoots, cows/horses will graze the foliage and goats will browse any part of it that isn’t overly mature/woody.

 

About Bamboo:

I’ll always remember a poem from one of my rather-hippie forest ecology professors:

“Sedges have edges, rushes are round, grasses have joints unless there are cops around.”

Therefore, bamboo is technically a grass!

Found on bamboofarmingusa,com, 2 laboratory analysis reports were shared that break down the nutrient content of bamboo.

From Dairy One Forage Testing Laboratory (PDF Link):

 

BambooDairyOneLab

From the North Carolina Department of Agriculture and Customer Services:

Bamboo_Lab

The crude protein figures above are high enough to be considered a “Premium” grass hay by USDA guidelines (retrieved from Oregon State University). Bamboo requires significant amounts of nitrogen so some sort of legume ground cover (likely peas or clover) would be a natural companion for the bamboo stands.

Letting animals graze bamboo also has the subjective benefit of breaking the monotonous boredom of extended hay feeding. As bamboo is an evergreen perennial, the stands could be opened to grazing in winter. I am not sure how nutrient composition changes with winter dormancy though.

Containing the potentially invasive bamboo:

Growing up in a metropolitan area that has spent countless resources battling the encroachment of bamboo, I want to take steps to ensure it remains contained. Originally meant for containing hops plants from taking over the garden, physical root barriers were actually invented with bamboo in mind.

Here are my two favorites on Amazon:

18″ x 100 ft

24″ x 100 ft

 

Time will tell how this experiment goes!

A friend brought up an interesting point in a comment on yesterday’s blog post. There is a species of bamboo native to Virginia and the Southeast US called Giant Cane. He provided a descriptive PDF from the USDA that explains the historical value and use of the plant. My favorite passage states:

According to environmental
historian Mart Stewart (2007), “Modern studies
have established that cane foliage was the highest
yielding native pasture in the South. It has up to
eighteen percent crude protein and is rich in
minerals essential for livestock health.” Livestock
eagerly eat the young plants, leaves, and seeds and
stands decline with overgrazing and rooting by hogs
(Hitchcock and Chase 1951).

Which demonstrates the plant is on par with bamboo as a nutrition source for livestock. Not to mention the renewable building material provided by mature stems. I could build chicken coops, green/hoop houses, storage sheds, etc. Interesting stuff to say the least!

Standard
General Pasture

Fencing Phases

Goats are awesome and I require a few on any farmstead operation I undertake. They are fun, have a lot of personality and provide awesome milk! I only want enough to provide milk and occasional meat to myself. However they are also quite adventurous and have a reputation for escape artistry. Consequently, fencing matters are complicated by goats.

Ideally I would like to run the goats and cows together to reap the benefits of multispecies farming. The goats will remove woody and broadleaf plants from the pasture while cattle turn the solar energy capture by grasses into protein! Since the pasture has been unmaintained, there will be plenty of work for the goats whose salary will be a feast of heavy populations of immature trees and brushy areas.

Fencing will be done in two phases. Phase 1 will serve the needs of permanent and temporary fencing for the cattle while providing the goats with their own movable electric net fencing. At lease the cattle will trample whatever plants they don’t like but I would like to let the goats harvest that biomass. The major difference with Phase 1 alone will be that the permanent electric fences contain only 2 wires. One or two wires will be use for the temporary paddock boundaries.

Phase 2 will accommodate the mixed goat-cow heard by upping the wire count to 5 (or more). The electric fence netting will be used as the temporary fencing for the mixed herd.

Eventually I would like to rebuild the permanent parameter fence for a big of escapee containment insurance.

My main concern is predation of the goats when separated from the cattle…and even when the herds are mixed. If coyotes prove to be an issue, we can have a vote when the time comes: llama, donkey, mule, guardian dog?

Standard
General Pasture

Mapping the Fence Posts

Lucky for me, there is a built-in tool in GIS software that allows points to be added along lines. I’m going to go ahead and add the points then make modifications to the fence line and posts together.

Constructing Posts:

 ConstructingPosts

Based on recommendation from fence vendors and manufacturers, I want the distance between posts to be no greater than 45 feet. Since I have to chose units in the same coordinate system I am using (State Plane), my input is 16 meters (~40 ft). In the “Construct Point” tool, I choose to create points based on the desired interval, not a total number of posts. Clearly you need posts at the start and end of the fence so that option is selected as well:

ConstructingPosts2

The fence posts will now be outputted to the blank point shapefile in which it was directed. Keep in mind that these are only the permanent fence posts!

For electric fencing, I want well-anchored wooden post for corners and galvanized steel for the line posts. The galvanized posts have an additional benefit of acting as grounding rods for the electric fence system while the braced wooden posts keep everything secure. Symbolized wood/steel posts, cleaned up fence lines and cleaned up post points yield the next iteration of my fence map:

FencePosts

Standard
Cattle

Calculating Cattle Needs

In my previous post, I decided to start with a paddock size of 5,000 square feet. Joel Salatin at Polyface Farm has recommended in the past to use 200 square feet per cow-calf pair per day.

I adapted that figure to 300 square feet per pair per day as the pasture I will be using has been unmaintained for about a decade. So until I see how much the cattles graze, I am going to be very conservative. The beauty of Managed Intensive Rotational Grazing (MIRG) is that I can easily change on the fly if required.

So theoretically, each daily-use paddock: (5,000 ft^2) / (300 ft^2/pair/day) means I can support 16 and 2/3 cow-calf pairs a day.

I made an interactive spreadsheet to automate these calculations for different scenarios, but I will save that until I dig more into the economics of cattle.

CattleNeedsBasic

Standard
Cattle

Brief Overview: Grazing Sciences

Cows are picky if given the opportunity to selectively graze. They will return to the most delicious grasses as soon as new growth appears while letting the less palatable (but equally nutritious) grasses reach maturity (thus no longer nutritious), seed and eventually crowd out the good stuff. With the Managed Intensive Rotational Grazing (MIRG) system, the animals are given the exact amount of pasture that they can eat in 24 hours before being moved to a fresh paddock which encourages the animals to take a more “mowing” approach opposed to selective. Each paddock is rested until it regenerates.

Grass grows on an “S” curve as demonstrated by this excerpt from the California Grazing Association’s publication titled Principles of Controlled Grazing (PDF):

PrincipleofGrazing

Since I am working with so little land (~6 Acres with trees removed), I want to manage it as efficiently as possible. The next question is how much do I let the grazers mow the paddocks? According to these fantastic demonstrations on Forage Decision Aids by the University of Kentucky, we can directly compare the regeneration of Orchard Grass of the 6 days following simulated grazing to 3.5 inches vs mowed all the way down to 1″.

Combined with various different university studies, most grasses regenerate best when grazed to ~10 cm. At this length, grasses retain enough photosynthetic tissue to create the energy required for regrowth without having to use reserves stored in the root system.

Standard
GIS Planning

Mapping the Farm!

My first step to analyzing the viability of my pasture was to produce a digital map. I grabbed some high resolution imagery and drew the boundaries, otherwise known as digitizing or interpreting aerial photography in the Geographic Information Systems (GIS) industry. After digitizing the pasture, an array of powerful tools are opened up to me to perform geospatial analysis.

Base Aerial Image

Base Aerial

Boundaries Drawn for Pasture

PastureBoundries

 

As you can see, pioneer species of trees have popped up sporadically. I’ve decided to work with them rather than against them as they have created wildlife corridors for deer. However I understand that I cannot consider the area beneath the trees as good grazing material. So my next step was to digitize the trees in GIS software, then cut them out of my pasture polygon.

Pasture with Trees Removed

PastureNoTrees

Geometries like area, perimeter and anything else needed can be instantly calculated:

Acreage of Pasture (top is with trees removed)

Acrage

With these basic data creation steps complete, I can move forward with more advanced analysis to plan the farm. Stay tuned!

Please don’t hesitate to leave comments if you catch any errors in my methodology, can offer feedback, have questions or would like me to perform similar GIS analysis for your property!

Standard
Uncategorized

Welcome and Introduction

Independent. If I could choose one word to describe myself, that would be it. Naturally I have accumulated intense dissatisfaction with the corporate world and the lifestyle it commands. Looking back on my life, I’m surprised no one saw this coming. As I aged, my literary tastes all but spelled out my future:

The Lorax, Jack London, Hatchet, My Side of the Mountain, the rest of the works by Gary Paulsen, The Hobbit, Robert Frost and Walt Whitman, Into the Wild, Walden, Ernest Hemingway (The Old Man and the Sea specifically), Steinbeck, McCarthy and so on.

So here I am, writing from my employment abroad in the Middle East dreaming about being home in the Appalachian Mountains. Self-sufficiency and homesteading have always been a bit of a fantasy of mine. However, the difficulty of diving in debt-free has been intimidating enough to keep me out.

Luckily a plot of land, including a barn and pasture, has been in my family for some time. It has been unused except as a hunting ground. With the blessing of the landowners within my family, I have a chance to realize some of the concepts in my head without taking on substantial debt. My financial aspirations are somewhere in the middle: use what is available to me not to get rich but not to operate at a loss.

As for the agricultural operations, I hope to build soil and quality grazing pasture by using only biological means and earn income by harvesting byproducts of my land management practices. I will be adapting Managed Intensive Rotational Grazing (MIRG) and methods of Joel Salatin at Polyface Farms as well as multi species grazing to suit my needs. In addition to farming, Other side projects like bee keeping, soap making and brewing beer will be included.

These projects are steps to self-sufficiency. It is unfortunate that I missed living in an era where most goods were procured locally. Via my farm project, I hope to contribute to making this a reality once again so any excess goods I produce may eventually find its way to local markets. Providing beer at a local scale would be very satisfying!

So here is my blog. Hopefully when I get to the point of selling grass fed meat, pastured eggs and other products, this can serve to provide complete transparency for my customers. I will include all of the planning and analysis I have conducted to assure that this is a worthwhile endeavour and to gain the confidence of the landowners.

Standard